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1 Abstract

In this report, we present a novel approach for 3D medical image segmentation using
point clouds. 3D Convolutional Neural Networks have been the most dominating
networks in medical image processing but they require large memory footprints and
training samples. Hence we used point clouds to represent the image instead of voxels.
Point clouds are lightweight and contain shape and smoother surface information.
We extracted the point clouds from 3D voxel images using canny edge detection.
We modified RandLa-Net[29], an attention-based point cloud segmentation network
with a feature extraction layer to aggregate local geometrical features with spatial
point features for our large-scale point cloud segmentation task. Our proposed model
performed better than the original network in multi-class as well as binary point cloud
segmentation tasks in Visceral dataset. Finally, we propose a model-independent step
to perform the image segmentation of the original 3D volumetric images in Visceral
dataset by mapping voxels in the point cloud space and adding it to the input point
cloud before being passed to the trained model. We performed many experiments on
the weights of the Cross-Entropy loss function for the class imbalance problem as well
as the intrinsic architectural properties of the model architecture like downsampling
factor and distinct latent vector learning that can be improved to perform better
segmentation.

2 Introduction

2.1 Lab Overview

CREATIS (Centre de Recherche en Acquisition et Traitement de l’Image pour la
Santé) is a Biomedical Research Lab based in Lyon, France. It is composed of about
200 persons with members of different domains. It focuses on two main tasks in
medical image analysis - (1) how imaging technology can be used to address major
health challenges and (2) how theoretical challenges in biomedical imaging problems
related to image, speech, and modeling can be tackled. The laboratory consists of
four research teams which focus on the above challenges through various interdis-
ciplinary methods. I worked in the team Myriad during my internship. The team
focuses on medical image analysis and learning (Segmentation, Reconstruction, etc)
and Modeling and Simulation.

2.2 Thesis Task

Work on the segmentation of unstructured data has already been done in the frame-
work of a previous internship funded by the ANR TOPACS project. This work led to
a 2D image segmentation approach, using mainly unstructured points as input data
for the segmentation, based on Occupancy Network[6]. This internship continues this
work to develop a novel approach to segmenting organs in 3D medical images using
point clouds. The task is divided into three parts.

• Point Cloud Extraction: Extraction of point clouds from 3D voxel images.

• Point Cloud Segmentation: Segmentation of the extracted point clouds.

• Voxel Segmentation: Segmentation of the 3D voxels using the model trained
on point cloud segmentation.
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Medical image segmentation is a crucial task to support the computer-aided diag-
nosis of diseases for optimal treatment options or robotic surgeries. With the rapid
advancements of Deep Learning Methods in 3D computer vision, 3D Convolutional
Neural Network (CNN)s are the most suitable choices for 3D medical image segmen-
tation. However 3D CNNs faces several challenges. Deep Neural Networks require
lots of training samples to train for a task. However, the most common challenge in
medical image segmentation is the rarity of annotated medical datasets images. 3D
CNNs also have a lot of trainable parameters. Usually, high-resolution scan volumes
in medical dataset are of 512 × 512 × 512 dimension, which is computationally very
expensive and requires a high memory footprint. Generally, the images are downsam-
pled to a lower size to fit in the model at the cost of information loss.([1, 2])

With the advent of deep networks for point cloud segmentation[5, 14, 18–21, 29],
it is possible to segment large-scale organs points efficiently. However, point cloud
segmentation faces the challenges of no-connectivity and unstructuredness.[3] In this
report we present the approaches to overcome those challenges and segment the point
clouds. We used the Canny edge detection method to extract the surface point clouds
from voxels. Then we use RandLa-Net[29] with a feature extraction layer, to perform
segmentation of the input point cloud. Finally, we will use the learned features of
the points to segment the voxels in the original 3D image by mapping voxels into the
point cloud space (Figure 1).

Figure 1: Framework of our current working model. H,W,D are the height, width
and depth of an image. First we extract N points using edge detection and then we
train a large scale point cloud segmentation network and finally during inference we
map the voxels into point cloud space as query points and output the segment labels.

The rest of the report is organized in the following way. Section 3 discusses the
related works in medical image segmentation and prior works in point clouds. Some
background concepts necessary for point cloud processing are also discussed in Section
3. Section 4 presents the details of the models, loss functions and evaluation metrics
used for the project. Section 5 explains our proposed modification of the RandLa-Net
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architecture. Section 6 details all the experiments and results of the internship while
Section 7 concludes with the future direction of our thesis idea.

3 Background and Related Work

Image segmentation is the task of assigning labels to every pixel in an image. It is
a method to divide the image into different groups called image segments for further
analysis of an image. Segments of the same nature have the same labels. Image Seg-
mentation has vast applications in Medical Imaging, video surveillance, autonomous
driving, etc.

3.1 3D Representation

3D datasets are acquired using various devices leading to different representations of
3D data. There are three most popular type of representations.

Figure 2: Different types of 3D representations of data (Image from [1]).

• Voxel Representation: A 3D image can be represented in a regular 3D grid.
Voxels which are a 3D equivalent of pixels are the simplest approach used to
represent the distribution of the object throughout the 3D scene. Despite its
simplicity, it faces some limitations. Voxel-represented 3D data also encodes
occupied and non-occupied parts of the scene which is not efficient and re-
quires more memory. Due to its cubically growing nature (n3), deep learning
methods such as 3D UNet [13] on voxel-based 3D datasets require high compu-
tational power and memory footprints due to convolution operations and large
numbers of parameters. Due to this, images are often downscaled to lower
resolutions(258 × 258 × 258) with the risk of losing important information on
smaller objects of the scene. Also, voxels do not capture finer shape details
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of the object. Octree-based representations solve the problems of memory lim-
itations. In octree-based representation, a 3D space is hierarchically divided
into several cubes and each cube is either outside or inside the object. It is a
very powerful method to represent the data as it has bigger cubes representing
the same space of multiple voxels. It has finer shape details than voxel-based
methods. However, both these methods do not preserve the intrinsic properties
of shapes and surface smoothness.

• Mesh Representation: A 3D Mesh consists of vertices, edges, and a set
of polygons called faces. A face is a closed set of edges and can be triangu-
lar (three edges) or quadrilateral(four edges). The vertices contain informa-
tion about intensity and coordinates. These vertices contain a connectivity list
which contains the information about the edges between two vertices. Learning
on 3D meshes comes with some challenges. First of all, Deep Learning (DL)
methods[34] are not yet capable enough to handle irregular representations of
meshes with noisy and missing data which is very common for the mesh-based
dataset. A mesh can be transformed into a graph based representation where
graph nodes correspond to the vertices and edges can be extracted from the
connectivity list. From there Graph Neural Network (GNN) can be used to
exploit the geometry of the 3D scene to learn about the objects.

• Point Cloud Representation: A point cloud is a set of points in the 3D
space that approximates the 3D geometry of space. Each point in the shape
contains its coordinates along with intensity information. Point clouds are usu-
ally acquired using sensing technologies. Despite its simple representation, it
is hard for DL algorithm like PointNet [14] to learn from point cloud data due
to irregularity or no connectivity problem. In Section 3.3 Point Cloud, it is
explained in details.

• Boundary Representation: Besides the above mentioned representations,
one other representation which is increasingly getting popular is Occupany
Networks[6]. In this representation, a classification model is learned using
existing data representation (point cloud, voxel, or mesh) and the object is
constructed using the class boundary. In the Occupancy Networks [6], an en-
coder is learnt on either point-based, voxel-based or range-based dataset. After
the encoder learns the global properties of the 3D object, points are sampled
from the 3D space and are used for query using the encoded vector. It uses
conditional batch normalization to condition the network on the encoded vec-
tor. In DeepSDF [7], a feed-forward neural network is learnt to represent Signed
Distance Function (SDF). An SDF is a continuous function that outputs the
distance of a point from the closest point on the surface.

SDF (x) = inf
y
∥x− y∥n,∀y ∈ M (1)

where M is the set of points on the boundary. SDF is negative if a point is
inside the object and positive if it is outside. The surface of the object can be
thought of as the decision boundary of the learned classifier.

3.2 Medical Image Segmentation

Medical Image Segmentation is the task of segmenting regions of interest(i.e organs,
tissues) in a medical image. It is useful for the analysis of the anatomical structure of
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organs, locating the tumors, lesions, abnormalities or measuring the growth of tissues
and it is an important step for clinical diagnosis and computer-aided assistance. Due
to different sensors and devices being used for acquiring medical images there are
many modalities in medical dataset.

• CT: Computed Topography (CT) scans are an imaging modality (Figure 3)
that uses X-rays to obtain the internal structural information of the human
body and is based on the property that objects absorb X-rays differently. Dense
tissues appear white in CT scans since it blocks some x-rays and soft tissues,
hollow space and fluids appear black since rays can pass easily. Hounsfield scale
can be used in CT images for interpreting the type of tissues depending upon
CT intensity value. The artifacts present in CT images are Streak Artifacts
which are caused when an object is moved or there are errors in data sampling
and Motion Artifacts which are caused near ill-defined boundaries of an object
during movement along the scanning plane.[11, 12]

• MRI: Magnetic resonance imaging (MRI) is an imaging modality (Figure 4)
that uses a magnetic field and radio waves to create a detailed image of organs
and tissues. Some of the artifacts present are RF Noise, Partial volume, Motion,
Gibbs Ringing, etc. It is generally more expensive than CT scans and prone to
spatial non-homogeneity of intensity due to the nonhomogeneity of the magnetic
field.

Figure 3: Coronal view of
abdomen in CT Modality
in Visceral Dataset.

Figure 4: Coronal view of ab-
domen in MRI Modality in Vis-
ceral Dataset.

Although datasets for organ CT scans are widely available, medical segmentation is a
challenging task because of small training datasets, noises and artifacts[2, 4]. In the
following part, we present some methods to perform medical image segmentation.

Earlier Methods: Earlier segmentation techniques were based on threshold-
ing on histogram features[8], edge-based segmentation[9], graph-cut segmentation[35],
and level-set methods[37]. While these methods are simple and interpretable, it suf-
fers from a lack of generality.
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CNN: With the rise of DL, it is possible to create architectures inspired from
CNN for effective segmentation and extend it to 3D CNN. In CNN, a set of filters
are used in every convolution layer to learn about the visual features of the 3D voxel
image. These filters work on the local receptive field to learn the features from a small
set of input data. A local receptive field is a region of input data that a kernel or filter
is exposed to and is defined by the kernel size. The pooling layers in CNN downsample
the feature maps increasing the receptive field and reducing the parameter sizes for
the next convolution layers. Due to this local learning approach, in lower layers, CNN
learns lower-level features such as lines, edges, and contours, and in the higher layer,
due to accumulated receptive fields, it can learn high-level features such as shapes,
boundaries, etc.

3DCNN:Medical images generally contain noise with blurry boundaries and that
is why it is challenging to segment based on low-level image features or just high-level
features. U-Net [10] solves this problem by creating skip connections to fuse high-level
features with low-level features. Skip connections are widely used to preserve infor-
mation through the concatenation of the encoding layer and corresponding decoding
layer output. Although it suffers from the semantic gap between low-resolution and
high-resolution features, it can be solved by using a convolution operation between
the skip connections. 3D UNet [13] extends the idea of U-Net [10] for 3D volume. It
uses 3D convolutional layer as well as 3D pooling layers. Due to its computational
challenges, 3D-UNet downsamples the input shape to 132 × 132 × 116 compared to
512 × 512 in UNet. It is also limited to three downsampling layers. VNet [38] uses
residual connections in between the layers to achieve high performance since residual
connections can solve vanishing gradient problems and accelerate network conver-
gence.

Challenges: Despite its remarkable advances in segmentation tasks in the medi-
cal domain in segmentation tasks, 3D CNNs have a lot of parameters and is computa-
tionally expensive. Reducing the input size causes the loss of important information.
3DCNN also requires a large number of training samples which is rare in the medical
dataset due to the lack of sufficient experts in annotation and privacy-related prob-
lems. Instead, point clouds require lower memory footprints to represent 3D data and
MutiLayer Perceptron (MLP) based models can be efficiently trained for segmenta-
tion in much less time (Section 3.3.2.D Theorem 1). Also, sampling can be performed
in various steps of the model architecture to reduce the number of points to mini-
mize memory requirements which can learn richer representation for the organs with
less amount of time[28, 29]. This makes point cloud learning an ideal choice for our
thesis task over voxel-based learning. Our proposed modification of RandLaNet[29]
model with feature extraction layer has 1.4M parameters compared to 3D UNet’s
20M parameters.

3.3 Point Cloud

3.3.1 Point Cloud Introduction

A. Point Cloud:
A Point Cloud is a set of points in 3D space which can represent the boundary or
the whole object (including inside points). In a point cloud, the points are unordered
and are not restricted by any grid which means a point cloud can be expressed in
an infinite way (using translation). Each point can have 3D coordinates and feature
vectors (P = {(Xi, Fi)}i=N

i=1 , Xi ∈ R3, Fi ∈ Rd). Other information such as SDF can
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be approximated in the pre-processing step.
B. Properties of Point Cloud in R3:

• Unordered: Unlike images or arrays, point cloud is unordered. It has no restric-
tion to be confined within a boundary. This causes a problem for CNN type
architecture to learn since CNN uses convolutional operations which requires
ordered and regular array like representation of the input. Point cloud networks
are generally invariant to the N ! number of permutations in input.

• Irregularity: Points are not sampled uniformly from an image which means
different organs can have dense point points while other sparse[5, 14]. This
causes class imbalance problems in point cloud dataset.

• Connectedness: Since points are not connected like graph structure and neigh-
bouring points contain meaningful spatial and geometry information of the or-
gan, networks must learn to pass information from points to points.

C. Point Cloud Generation:
Point clouds are generated by 3D Scanners like time-of-flight sensors and depth cam-
eras or photogrammetry software. Time-of-flight sensors use the reflected laser beams
from sensors to the object to capture the surface of the object. For our task, we used
edge detection to capture high gradient points from the voxel images. Figure 5 shows
one such example.

Figure 5: Extracted Point Cloud of lungs from visceral dataset using canny edge
detection.

D. Point Cloud Sampling:
Point Cloud Sampling is the method of choosing a subset of point clouds. Sampling
methods were used in our model RandLa-Net[29] to reduce the number of points for
faster learning. This is an essential step in the large-scale point cloud processing,
since learning features for all the points can be time consuming. Instead, features
can be learnt for small point clouds and for other points, it can be aggregated using
neighboring features. There are different sampling algorithms available. Let N be
the number of points, M is the sampled number of points chosen with N > M , D is
the maximum number of points in a 3D voxel grid (N >> D) and K is the number
of nearest neighbour(N >> K).

1. Heuristic Sampling
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• Grid Sampling: In Grid Sampling, a 3D voxel grid is used over the point cloud
and each occupied voxels extract one point based on averages or most frequently
occurring classes. This sampling results in a uniform sample. The time com-
plexity of the grid sampling is O(ND). By averaging the points on the surface,
grid sampling loses smooth boundary information.

• Random Sampling: One of the simplest sampling methods, Random Sampling
takes M random points from a point cloud of N points (N > M). Time
complexity is O(M) which makes it efficient to use in large-scale point cloud
networks.

• Farthest Point Sampling: It iteratively extracts set of points P = {p1, p2, · · · , pM}
such that pj is the farthest point from the first j − 1 points in P . The time
complexity is O(M2N) which makes it unsuitable for large scale point cloud
processing.

• Inverse Density Importance Sampling: In IDIS, density is calculated for ev-
ery point by adding the distance between the point and its nearest neighbors.
density(x) =

∑
y∈KNN(x)∥x− y∥22. So N points are reordered according to the

inverse of the density and top M points are selected which means lower density
points are more likely to be chosen than high dense points. Time complexity is
O((K +N)logN). This sampling can control density but is sensitive to outliers
and noise.

2.. Learning Based Sampling

• Generator Based Sampling: Generator Based Sampling(GS) learns to generate
a small subset of point clouds from the original point cloud. For a point cloud
set P and a task T , GS tries to find S ⊂ P by minimizing the objective function
f such that S∗ = argminS(f(T (S)). It is an end-to-end trainable model. But
at inference stage, it uses FPS[19] to match subsets with original point cloud.
It takes up to 20 minutes to sample 10% of 106 points.

• Gumbel Subset Sampling: Gumbel Subset Sampling [28] uses attention mech-
anism to choose a representative and task-specific subset of the point cloud.
Given an input set Xi ∈ RNi×c, the task is to choose a suitable Xi+1 ∈
RNi+1×c, Ni+1 ≤ Ni and Xi+1 = y · softmax(WXT

i ),W ∈ RNi+1×Ni . It is com-
pletely end-to-end learnable and can be used in any segmentation network.

E. Point Cloud Feature Aggregation:
Since point clouds lack connectedness, feature aggregation is a method to pass infor-
mation from points to points. Feature Aggregation layer has been used in RandLa-
Net with attention mechanism. It is the backbone of every MLP-based point cloud
networks. Here we present the mathematical formula for it. In General, let P =
{p1, p2, p3, . . . , pn} be the the set of points, pi ∈ R3. F = {f1, f2, f3, . . . , fn} be
the set of features for points in P, fi ∈ Rd. Then the feature aggregation function
G : R3 × Rd → Rd′ is defined by

G(pi, fi) = R({A(∆pij, fj)|j ∈ N(i)} (2)

whereA is the feature transformer (MLP) andR is the reduction function(MAX,AVG,SUM).
N(i) is the set of indices of points that are neighbors pi and ∆pij is the effect of pj on
pi. ∆pij = pj − pi. Alternatively ∆fij = fj − fi can also be used instead of ∆pij and
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one example of A is A(∆pij, fj) = MLP (concat(∆pij, fj)). In RandLa-Net, attention
scores have been added with the concat function to add weights to the aggregating
features. Almost all the components in feature aggregation functions are susceptible
to changes but all the functions can achieve state-of-the art results given the right
parameters and settings[30].

3.3.2 Point Cloud Segmentation

Point Cloud Segmentation is the task for grouping objects or assigning labels to every
points in the point cloud. It is one of the most challenging tasks and a research topic
in deep learning since point clouds are noisy, unstructured and lack connectedness
property. All the methods are categorized into four categories.

(A) Edge Based Methods
Edges describe the intrinsic characteristics of the boundary of any 3D object.
Edge-based methods locate the points which have rapid changes in the neigh-
borhood. Bhanu[5] proposed three approaches for detecting the edges of a 3D
object. The first approach is calculating the gradient. The second approach
is fitting 3D lines to a set of points(i.e neighboring points) and detecting the
changes in the unit direction vector from a point to the neighboring points.
The third approach is a surface normal approach where changes in the normal
vectors in the neighborhood of a point determine the edge point. Edge models
are fast and interpretable but they are very sensitive to noise and sparse den-
sity of point clouds and lack generalization capability. Learning on incomplete
point cloud structure with edge-based models does not give good accuracy. In
Medical image datasets especially MRI data, the organ boundaries sometimes
do not have high gradient points compared to CT data which means for every
modality, we have to find new thresholds in edge-based methods.

(B) Region Based Methods
Region-based methods use the idea of neighborhood information to group points
that are similar thus finding similarly grouped 3D objects and maximizing the
dissimilarity between different objects. Compared to edge-based methods, these
methods are not susceptible to noise and outliers but they suffer from inaccurate
border segmentation. There are two types of region-based methods.

• Seeded-region Methods(bottom up): Seeded region segmentation is a fast,
effective and very robust image segmentation method. It starts the seg-
mentation process by choosing manually or automatically in preprocessing
step, a set of seeds which can be a pixel or a set of pixels and then grad-
ually adding neighbouring points if certain conditions satisfy regarding
similarity[5, 15]. The process finishes when every point belongs to a re-
gion. Seeded-based segmentation is very much dependent upon the choice
of seed points. Inaccurate choices often lead to under-segmentation or
over-segmentation.

• Unseeded-region Methods(top-down): Unlike seeded-based methods, un-
seeded methods have a top-down approach. The segmentation starts with
grouping all the points into one region. Then the difference between all the
mean point values and chosen point value is calculated. If it is more than
the threshold then the point is kept otherwise the point is different than
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the rest of the points and a new region is created and the point is added
into the new region and removed from the old region. The challenges are
over-segmentation and domain-knowledge which is not present in complex
scenes[5].

(C) Attribute Based Methods
Attribute-based methods use the idea of clustering. The approach is to calculate
attributes for points and then use a clustering algorithm to perform segmen-
tation. The challenges in these methods are how to find a suitable attribute
that contains the necessary information for segmentation and to define proper
distance metrics. Some of the attributes can be normal vectors, distance, point
density, or surface texture measures. It is a very robust method but performs
poorly if points are large-scale and attributes are multidimensional.[5]

(D) Deep Learning Based Methods
The main challenge in point cloud segmentation is find good latent vector which
can contain sufficient information for segmentation task. Deep Learning meth-
ods offers the best solution to learn good representations. Neural networks being
a universal approximator can theoretically approximate the target function for
segmentation. The following theorem justifies how MLPs can approximate the
function for the segmentation task given enough neurons.
Theorem 1: Given a set of point clouds X = {{x1, x2, . . . , xn}, n ∈ Z+, xi ∈
[0, 1]m}, let f : X → R be a continuous function with respect to hausdorff
distance(dH(·, ·)).∀ϵ > 0,∃η, a continuous function and a symmetric set func-
tion g(x1, x2, . . . xn) = γ ◦MAX such that ∀S ⊂ X.∣∣∣∣f(S)− γ

(
MAX
xi∈S

(η(xi))

)∣∣∣∣ < ϵ

γ is a continuous function and MAX is an elementwise max operation which
takes an input k number of vectors and return a vector with element wise max-
imum. In practice γ and η are MLP[14].
The DL methods for point cloud segmentation can be divided into following
ways.

(a) Projection-Based Networks: Following the success of 2d CNNs, projection-
based networks use the projection of 3D point clouds into 2d images from
various views/angles. Then 2D CNN techniques are applied to it to learn
feature representations and finally features are aggregated with multi-view
information for final output[3, 16]. In [17], tangent convolutions are used.
For every point, tangent planes are calculated and tangent convolutions
are based on the projection of local surface geometry on the tangent plane.
This gives a tangent image which is an l× l grid where 2d convolutions can
be applied. Tangent images can be computed even on a large-scale point
cloud with millions of points. Compared to voxel-based models, multi-
view models perform better since 2D CNN is a well-researched area and
multi-view data contain richer information than 3D voxels even after los-
ing depth information. The main challenges in multi-view methods are the
choice of projection plane and the occlusion which can affect accuracy.

(b) Voxel-Based Networks: Voxel-based methods convert the 3D point
clouds into voxel-based images. Figure 6 shows an example. The points
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which make up the point cloud are unstructured and unordered but CNN
requires a regular grid for convolution operation. Voxelization is done in
the following steps.

• A bounding box of the point cloud is calculated which defines the
entire space that is to be divided.

• Then the space is divided into a fixed-size grid. Each grid is called 3D
cuboids.

• The point cloud is divided into different grids with each 3D cuboid
containing several points and these 3D cuboids become voxels that
represent the subset of points.

• Features are calculated from the subset of points inside a voxel.

Figure 6: Voxelization of a point cloud (Image
from [18]).

Figure 7: Voxelization and mem-
ory footprint (Image from [18]).

Voxelization creates quantization artifacts and loses smooth boundary in-
formation. It is a computationally expensive preprocessing step and mem-
ory footprints increase cubically due to the cubical growth of voxels. If
voxel resolution is low, many points will belong to a voxel and will be rep-
resented by a single voxel so these points will not be differentiable. A point
is differentiable if it exclusively occupies one voxel grid. Figure 7 summa-
rizes the memory requirements for if we want to retain higher number of
differentiable points which will mean lower information loss[18]. To retain
90% of the differentiable points, GPU memory is more than 82 GB and
voxel resolution is 128×128×128 which is a huge computational overload.
After voxelization, 3D CNNs can be applied for learning features for seg-
mentation. Techniques mentioned in Section 3.2 can be used for segmen-
tation. In a similar approach, Point-Voxel CNN [18] uses CNN and MLP
bases fusion learning. It first voxelizes the point cloud and uses convolu-
tion for feature learning and then devoxelize the voxels for voxel-to-point
mapping(i.e interpolation is used to create distinct features of a voxel for
the points that belong to the voxel). The features of a point cloud are
then aggregated with the features learned using MLP. Voxel-based net-
works for point cloud segmentation have the same challenges as mentioned
in Section 3.2 3DCNN.

(c) Point-Based Networks: Point-Based Networks work on raw point cloud
data. They do not require voxelization or projection. PointNet [14] is a
breakthrough network that takes input as raw point clouds and outputs
labels for every point. It uses permutation-invariant operations like point-
wise MLP and symmetric layer, Max-Pooling layer for feature aggregation
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layer. It achieves state-of-the-art performance on benchmark datasets. But
PointNet lacks local dependency information and so it does not capture
local information. The max-pooling layer captures the global structure
and loses distinct local information. Inspired by PointNet many new net-
works are proposed to learn local structure. PointNet++[19] extends the
PointNet architecture with an addition of local structure learning method.
The local structure information passing idea follows the three basic steps
(1) Sampling (2) Grouping (3) Feature Aggregation Layer (Section 3.3.1.E
lists some Feature Aggregation functions) to aggregate the information
from the points in the nearest neighbors. Sampling is choosing M cen-
troids from N points in a point cloud (N > M). Random Sampling or
Farthest Point Sampling are two such methods for sampling centroids.
Grouping refers to sample representative points for a centroid using K-
Nearest Neighbor (KNN). It takes the input (1) set of points N × (d+C),
with N is the number of points,d coordinates and C feature dimension
and (2) set of centroids N1 × d. It outputs N1 ×K × (d + C) with K is
the number of neighbors. These points are grouped in a local patch. The
points in the local patches are used for creating local feature representation
for centroid points. These local patches work like receptive fields. Feature
Aggregation Layer takes the feature of the points in the receptive field and
aggregate them to output N1 × (d + C). This process is repeated in a
hierarchical way reducing the number of points as it goes deeper. This
hierarchical structure enables the network to be able to learn local struc-
tures with an expanding receptive field. Most of the research in this field
has gone into developing an effective feature aggregation layer to capture
local structures. PointWeb[20]
creates a new module Adaptive Feature Adjustment to enhance the neigh-
bor features by adding the information about the impact of features on
centroid features and the relation between the points. It then combines the
features and uses MLP to create new representations for centroid points.
Despite their initial successes the following methods achieve higher perfor-
mance due to their advanced local aggregation operators.

(d) Graph-Based Networks: A point cloud is unstructured, unordered, and
has no connectivity properties. But it can be transformed into a graph
structure by adding edges to the neighbors. Graph structures are good for
modeling correlation and dependency amidst points through edges. GNN
based networks use the idea of graph construction, local structure learning
using expanding receptive field, and global summary structure. Point-
GNN [21] creates a graph structure using KNN and applies pointwise MLP
on them followed by feature aggregation. It updates vertex features along
with edge features at every iteration. [22] introduces super point graphs to
segment large-scale point clouds. It first creates a partition of geometrically
similar objects (i.e planes, cubes) in an unsupervised manner and applies
graph convolutions for contextual segmentation. DGCNN [23] introduces
the Edge Convolution operation for dynamically updating the vertices and
edges thus updating the graph itself. [24] creates a Point Global Context
Reasoning module to capture the global contextual information from the
output of any segmentation network by creating a graph from the output
embedding vectors.
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(e) Transformer and Attention-Based Networks: Transformers and at-
tention mechanism are a major breakthrough in NLP tasks. This has lead
to research in attention mechanism in 2D CNN[25]. Attention follows the
following derivation.

yi =
∑

xj∈R(xi)

α(xi, xj)⊙ β(xj) (3)

where ⊙ is the Hadamard product, R(xi) is the local footprint of xi (i.e a
receptive field, one such example can be nearest neighbors). β(xj) produces
a feature vector from xj that is adaptively aggregated using the vector of
α(xi, xj), where α(xi, xj) = γ(δ(xi, xj)). δ combines the features of xi and
xj and γ explores the relationship between xi and xj expressively. In NLP,
γ, δ and β is known as Query,Key and Value. Some examples of δ function
can be

• δ(xi, xj) = f1(xi) + f2(xj)

• δ(xi, xj) = f1(xi)− f2(xj)

• δ(xi, xj) = f1(xi)⊙ f2(xj)

• δ(xi, xj) = [f1(xi); f2(xj)] (; denotes concatenation)

In Matrix Form: Let P be the set of points in a point cloud (P ∈ R)N×F

where F is the feature channels). Q,K ∈ RN×Ck , V ∈ RN×Cv .

Q = PWq, K = PWk, V = PWv

Attention(Q,K, V ) = softmax

(
QKT

√
Ck

)
V

The time complexity of original attention is O(N2Cv) and space complex-
ity O(N2 +NCk +NCv) which quadritically increases as N increases.
Attention mechanisms can be categorized into two categories. In Self At-
tention Query, key, and value are derived from the same input meaning
model uses attention scores for making better representation from a single
representation. In Cross Attention, Value and Key come from input and
Query comes from another input (Q = P1Wq, K = P2Wk, V = P2Wv). It
is used to query and learn conditional representation using the attention
score of other feature vectors. In a point cloud segmentation network, at-
tention is generally used for the local aggregation layer for giving adaptive
weights to different features and can be used in point-based or graph-based
networks. Point Transformer [26] uses Equation 3 for local feature aggrega-
tion layer after extracting neighbors. Each of the component in Equation
2 is approximated by an MLP. Furthermore, it uses an encoder-decoder-
like structure. In each layer of the encoder, points are downsampled by
a certain factor and in decoders, the points are upsampled with skip con-
nections added for preventing information leaks. 3D Medical Point Trans-
former [27] uses an Edge Convolution module for computing query value.
It uses Lambda Attention layer which is

Attention(Q,K, V ) = Q(softmax(KT )V )

which has O(NCkCv) time complexity and O(NCk +CkCv +CkCv) space
complexity. Although it uses a cost-effective attention layer, 3DMedPT
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can not perform large-scale point cloud segmentation due to computational
challenges. Point Attention network [28] uses a new end-to-end subsam-
pling method for downsampling the number of points and is permutation
invariant and robust to noises and outliers.

4 Model

4.1 Canny Edge Detection

Our first task was to generate point clouds from the voxel images. So, we extracted
edges using canny edge detection method from the 3D image to define the point
clouds. These points are mostly on the surface of the organs. Canny Edge Detection
is a multi-step algorithm to detect edges from an image. It follows the following steps

• Noise Removal: Due to image sensors, images often contain random noise,
which results in pixel being different than neighboring pixels. This will result
in false detection of edges. So Gaussian Filter is used to smoothen the image
and remove the noise.

I = IN ∗ g(x, y) = 1

σ
√
2π

e−
x2+y2

2σ2 ∗ IN

where IN is the noisy image.

• Gradiant Calculation: Edges occur in places where there is large change of
pixels’ intensity. To detect it, gradiants Ix and Iy are calculated in x and y
directions by convolving I with sobel kernel Kx and Ky.

Kx =

−1 0 1
−2 0 2
−1 0 1

 , Ky =

 1 2 1
0 0 0
−1 −2 −1


Magnitude M and slope θ can be calculated as follows

|G| =
√

I2x + I2y θ(x, y) = tan−1 Iy
Ix

• Non Max Suppression: After applying the sobel kernel on the smooth image
I, edges can be seen but some edges are thin and some are thick. Non-max
suppression make the images thin. The algorithm checks all the pixels and
finds the one with the maximum value in the edge directions.

• Hysteresis Thresholding: Canny detection implements two types of pixels; strong,
weak and non-relevant.

– Strong pixels have high intensity to be considered as a pixel in edge

– Weak pixels do not have high enough intensity to be considered as strong
pixels but not small enough intensity to be considered as non-relevant for
edge detection.

– Any other pixels are considered as non-relevant pixels.

The double threshold {α, β} holds for:
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Figure 8: RandLa-Net Architecture. FC is the fully connected layer, LFA is the local
feature aggregation, RS is random sampling, MLP is shared multilayer perceptron,
US is upsampling and DP is dropout. (Image from [29])

– High threshold β is used to detect strong pixels.

– Low threshold α is used to detect non-relevant pixels.

– All pixels having intensity between α and β is weak pixel.

After this step, weak points are considered strong if at least one of the neigh-
boring pixels is a strong one.

4.2 RandLa-Net

Our second task was to segment the extracted point cloud. Large-scale point cloud
segmentation is a challenging task because of huge computational requirements and
effective embedding learning. RandLa-Net[29] is an efficient and lightweight neural
architecture that segments every point in large-scale point clouds. It is an encoder-
decoder-like architecture that uses random sampling to downsample the input point
cloud in the encoder and upsample the point cloud in decoder blocks. It uses ran-
dom sampling compared to other sampling methods because of faster computation.
Although random sampling can discard key points necessary for efficient point cloud
segmentation, RandLa-Net implements attention-based local feature aggregation to
effectively share features of points that are removed into the neighbor points. Figure
8 is the architecture of RandLa-Net The reasons we choose RandLa-Net for our thesis
tasks are

• It is lightweight and achieves state-of-the-art results compared to existing meth-
ods. The random sampling method reduces the computation.

• The proposed Local Feature Aggregation (LFA) can expand into larger receptive
fields using Local Spatial Encoding (LSE) with attentive pooling of point and
neighbor features.

• The network consists of Shared MLP without any need of graph reconstuction
or voxelization.

• The encoder-decoder architecture with downsampling is preferable for our task
since it aims to generate discriminative latent vectors using small samples which
represent our objects of interest.
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A. Random Sampling
As explained in Section 3.3.1.D Point Cloud Sampling, random sampling is extremely
fast (time complexity O(N)). FPS, IDIS and GS are too computationally expensive
for large scale point clouds. It is invariant to any changes to the points as well as
the permutation of points. The random-sampling block is added in encoder part. To
compensate for the loss information, the author has added LFA module(Figure 9).

Figure 9: Random Sampling in RandLa-Net. The downsampling rate is a hyperpa-
rameter and has significant influence on model performance (Image from [29]).

B. Architecture
RandLa-Net consists of 4 encoder and 4 decoder layers (Figure 8). Each encoder
layer consists of LFA modules which is shown in the bottom panel of Figure 10. LFA
modules aggregate the local features and gradually expands the receptive field to
perform global feature passing. Every LFA module is followed by a random sampling
step. Let the input shape be N × dn, where N is the number of points in the point
clouds (N ≈ 106–107) and dn ∈ R, d ≥ 3). dn can contain the coordinates with other
features like intensity, gradient or normal.

Positional Encoding: Since point clouds are unstructured, positional encoding
layer embeds the positional information in an 8 dimensional vector (3 → 8). This
layer describes the location of a point by mapping the position/index of a point into
a vector and assigning unique representation for every point. In this way, positional
encoding layer makes the network more permutation-invariant.

Encoding Layer: The encoding layer progressively reduces the number of points and
increases the point features. The point cloud is downsampled at each encoding layer
after the dilated residual block by downsampling factor 4 (N → N

4
→ N

42
→ N

43
→ N

44
).

The per-point feature dimension is increased gradually (8 → 32 → 128 → 256 → 512).

Decoding Layer: In each decoder layer, points are upsampled. In each encoder
layer, when a point is removed, it is stored as a reference. In subsequent decoding
layer, (i.e the layer with which a skip connection is added from an encoder in Figure
8) for each query reference point, KNN is used to find the one nearest neighbor in
the input set of points. Afterwards, feature of the nearest point is copied to the
target point. Subsequently, the feature maps are concatenated with the feature maps
produced by corresponding encoding layers through skip connections. Then a shared
MLP is applied to the concatenated feature maps. Shared MLP means same MLP
network for every point in the input point cloud.
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Figure 10: Feature Aggregation Module. The topleft panel shows Local Spatial En-
coding that extracts features and positional information from neighbors.The topright
panel shows attentive pooling to extract important features from neighboring points.
The bottom layer is Dilated Residual Block which expands the receptive field (Image
from [29]).

Final Output Layer:
The segmentation label is predicted through three fully connected layers (N, 64) →
(N, 32) → (N,C), where C is the number of classes.

C. Local Feature Aggregation
LFA module consists of three neural units (1) LSE (2) Attentive Pooling (3) Dilated
Residual Block.

C.1. Local Spatial Encoding
Let P = {p1, p2, . . . , pn}, pi ∈ R3 and F = {f1, f2, . . . , fn}, fi ∈ Rd be the point set
and feature set accordingly. LSE units embed the features and the spatial information
from the neighbourhood points. This helps the network learn the complex local
geometrical structures with as increasing receptive field.
For every point pi, first K-Nearest Algorithm is used for finding K neighbor points.
Let the set of neighbor points, N(pi) = {p(i)1 , p

(i)
2 , . . . , p

(i)
K } and the set of features for

the neighbor points be N(fi) = {f (i)
1 , f

(i)
2 , . . . , f

(i)
K }. At first positional features for

every point in N(pi) is encoded as follows.

r
(i)
k = MLP

(
pi; p

(i)
k ; (pi − p

(i)
k ); ||pi − p

(i)
k ||

)
, r

(i)
k ∈ Rr (4)

; is the concatenation layer and || · || is the l2 distance between neighbor and center

points. r
(i)
k not only just concatenates two positions but also the effect of one point

on another point in terms of distance is also added. Once r
(i)
k ,∀k = 1, 2, . . . , K is

computed it is concatenated with corresponding features in N(fi).(See Figure 10 Top

Left). F̂ = {F̂1, F̂2, . . . , F̂i}, F̂i = {f̂ (i)
k }k=K

k=1 , f̂
(i)
k = {r(i)k ; f

(i)
k }.

C.2 Attentive Pooling
Attentive pooling aggregates the set of neighboring point features F̂ with adaptive
weights. Existing methods use mean or max pooling, resulting in the loss of important
information. Attention mechanism will automatically learn important features. Given
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Figure 11: Illustration of dilated residual block which expands the receptive field at
each step (Image from [29]).

F̂i = {f̂ (i)
1 , . . . , f̂

(i)
k }, first attention scores are computed using a shared MLP g such

that
s
(i)
k = g(f̂

(i)
k ,W ) (5)

where W is the weight of the MLP. After learning the attention scores feature for
point pi, fi is updated with concatenated neighbor features.

f̄i = MLP (
K∑
k=1

(f̂
(i)
k ⊙ s

(i)
k )) (6)

Together with LSE and Attentive pooling, the model learns informative features with
geometric patterns for point pi.

C.3 Dilated Residual Block
Since the point cloud is downsampled, it is necessary to expand the receptive field to
preserve geometric details. Inspired by Resnet architecture, the author stacks several
LSE and attentive pooling in one block before downsampling. In Figure, 11, the red
points observe K features from neighboring points after the first LSE and Attentive
Pooling layer and then in the next step it learns from K2 features(See Figure 10
bottom layer). However, the more layers are added, the more the model is likely to
be over-fitted. In the original paper as well as in our modified architecture(Figure
12), only two layers of LSE and Attentive pooling are used.

4.3 Loss Function

Loss functions measure the error between the ground truth and the predicted seg-
mentation label. It is one of the most important parts of deep learning tasks. During
the training phase, a loss function allows the model to learn meaningful representa-
tions and make predictions closer to ground truth. Let gci be the ground truth binary
indicator of class label c (i.e gci = 1 if ith point is of class c else gci = 0) and sci is the
predicted segmentation probability for class c and let N be the number of points and
C be the number of classes. The loss functions used in our experiments are listed
below.

A. Cross-Entropy:
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Cross Entropy (CE) is the widely used loss function for classification and segmenta-
tion task. It is derived from (Kullback-Leibler) KL divergence which measures the
similarity between two probability distributions[31]. It is defined by

LCE = − 1

N

C∑
c=1

N∑
i=1

gci logs
c
i (7)

Cross-Entropy loss is sensitive to class imbalance (i.e the importance of majority class
can dominate other minority classes), which can lead to wrong prediction of segmen-
tation labels for minority classes as the model will focus more on the performance
of majority class and less on the loss of minority class points. Weighted Cross En-
tropy (WCE) loss is an extension of the CE Loss which deals with class imbalance.
It is defined by

LWCE = − 1

N

C∑
c=1

wc

N∑
i=1

gci logs
c
i (8)

wc is the weight for the class c. Three types of weighing methods have been used in
our experiments with RandLa-Net.

1. Frequency Method: Let CN = {n1, n2, . . . , nk},∀k = 1, 2, . . . , C be the number of
classes in a dataset. Let the ratio set be R = {r1, r2, . . . , rk}, where ri =

ni
C∑

i=1
ni

. Then

the weights are wc =
1
rc
.

2. Cost Matrix Cross Entropy (CMCE): The cost matrix MC for cross entropy is
defined by 

w(11) w(12) · · · w(1C)

w(21) w(22) · · · w(2C)

...
...

. . .
...

w(C1) w(C2) · · · w(CC)


where wij=the weight for a point with ground truth i and predicted label j. The
main properties of a cost matrix MC are

• Offseting the cost matrix by amount ϵ does not affect the loss.

• The cost of true prediction should be less than mean cost of all misclassifications[31,
32].

wii ≤ 1

C2 − C

C∑
a,b=1
a̸=b

wab

.

• All the costs are non-negative (wij ≥ 0,∀i, j = 1, 2, . . . , C).

B. IOULoss:
Intersection Over Union (IOU) loss directly optimizes the segmentation performance
by taking into account false positives and negative error. IOU is defined by

IoU =
TP

TP + FP + FN
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where TP, FP, and FN are the number of true positives, false positives, and false nega-
tives respectively. From the output scores of the model, these can be approximated by

LIoU = 1−

C∑
c=1

N∑
i=1

gci s
c
i

C∑
c=1

N∑
i=1

(gci + sci − gci s
c
i)

C. Dice Loss:
Dice Loss is defined by

LDice−Square = 1−
2

C∑
c=1

N∑
i=1

gci s
c
i

C∑
c=1

N∑
i=1

{(gci )2 + (sci)
2}

Unlike CE Loss, it does not require weights for class imbalanced tasks although it’s
sensitive to the shape of the objects.

4.4 Evaluation Metrics

Metrics evaluate the performance of a model. Several metrics are used to evaluate
our segmentation network.

A. Recall: Recall is the true positive rate which calculates the proportions of actual
positives that are predicted correctly i.e for any organ, what proportion of points that
belong to the organ is predicted correctly. It is defined by

Recall =
#true positives

#true positives + #false negatives

For any class, true positives occur when model predicts the class correctly, False
postives occur when model misclassifies a point as positive and false negatives when
model misclassifies a positive point to other class.

B. Precision: Precision calculates what proportions of predicted positive examples
are actually positive i.e for any organ what proportion of points that have been
predicted to belong to the organ actually belongs to the organ. It is defined by

Precision =
#true positives

#true positives + #false positives

C. IoU: Intersection over union is the metric which evaluates the similarity of pre-
dicted object shape and the ground truth space. It is defined by

IoU =
#true positives

#true positives + #false negatives + #false positives

.

D. Confusion Matrix: A confusion Matrix is defined by M = (mij) ∈ RC×C , where
mij denotes number of points belonging in class i that are predicted as class j. It
shows the number of true positives, false negatives and false positives for every class.
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5 Contributions

5.1 Modified RandLa-Net with Feature Extractor

While RandLa-Net inputs allow extra features such as intensity, gradient, etc, it does
not learn good features even with receptive fields. So we propose to add a Feature

Figure 12: Modified RandLaNet with Feature Extractor.

Extractor to learn efficient features from neighboring intensity points. For every point
pi, we select the intensity of neighbor points in a k × k × k grid (k = 3, 5, 7), which
gives us an input size of N × k × k × k. Since our original image is voxel-based
3D image and extracted point clouds are representative of the voxels, neighbor point
clouds are the neighboring voxels in the original image.
After extracting the neighbor intensity points, the convolutional operation is per-

Figure 13: Proposed Feature Extractor. It is a convolutional operation followed by
an FC layer. This operation is done for every N points.

formed with k × k × k kernel size and 256 channels, which are flattened and passed
through a liner layer ((N, 256) → (N, 64)). Since N is huge, performing complex tasks
at this stage is very computationally expensive. That is why the kernel size is equal to
the neighborhood intensity shape. These features are concatenated with the output
of the feature encoding layer and passed to the encoder (Figure 12). Also, the down-
sampling factor has been changed to 2 instead of 4 to increase the receptive fields and
allow more points to learn distinct features and also one more FC((N, 64) → (N, 128))
layer has been added before the output layer to make the embedding size larger and
learn more complex features.
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5.2 ComboLoss:

We propose a combination of different weights in CE Loss when the frequency method
can be extreme and it is defined by,

wλ
c = α1 +

α2

rc + λ
+

α3

rc
,

3∑
i=1

αi = 1

For example as the minority class ratio gets smaller, the weight gets hyperbolic
growths in frequency method, then as x → 0, 1

x
→ ∞.So even if the larger weights

improve the recall of the minority class, lower weight(x → ∞, 1
1−x

→ 0) of the ma-
jority class causes a lot misclassfication of the majority class reducing the precision
of the minority class.

6 Experiments

This section presents all the experiments and the methods for our task.

6.1 Dataset

For our internship task, we have used Visceral(Visual Concept Extraction Challenge
in Radiology) dataset. We used the gold corpus contrast-enhanced CT scan dataset
which contains 20 volume images of dimension 512 × 512 × 450 with annotation for
kidneys, lungs, liver, urinary bladder, pancreas, adrenal glands, thyroid glands, aorta
and some muscles. There are four modalities in the dataset which is listed in Table
1.

Identifier Modality Voxel Dimension(mm)

CT-Wb CT 0.8− 0.9× 0.8− 0.9× 1.5
CTce-ThWb contrast-enhanced CT 0.6− 0.7× 0.6− 0.7× 1.2− 1.5
MRT1-Wb MRI 1.1− 1.3× 1.1− 1.3× 6− 7

MRT1cefs-Ab contrast-enhanced MRI 1.2− 1.3× 1.2− 1.3× 3

Table 1: Different Modalities in Visceral Dataset. CTce-ThAb is used for our task.

We used CTce ThAb because it is easy to perform edge detection on high contrast
images to extract point clouds. In Visceral, Neuroimaging Informatics Technology
Initiative (NIfTI)1 format is used for the medical imaging data. To facilitate faster
training, we reduced the size of the image to 128× 128× 112. All the volume images
and segmentation masks are transformed into RAS2 reference format. RAS reference
means that the axes in terms of the subject are left to right, posterior to anterior and
inferior to superior(toe to head). Figure 14 shows different slices from various angles
of the 3D volume image.

1http://nifti.nimh.nih.gov/
2https://nipy.org/nibabel/coordinate systems.html
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Figure 14: 2D slices of a visceral image from different view with ground truth seg-
mentation task. The images are from contrast enhanced CT scans. For multi-class
segmentation task five organs are chosen - lungs, liver, bladder, left and right kidney.

6.2 Point Cloud Extraction

Since every voxel can be represented as a point, the volumetric data itself can be
transformed to point cloud data but it would take an enormous amount of space
to process and train the network. We choose lungs, liver, left and right kidney and
bladder for the segmentation task. There are several choices for sampling points
from voxel-based images. Grid Sampling, Random Sampling, Contour detection, or
SIFT-based keypoint detectors are some of it. Since the data has class imbalance
with the background as dominating class, uniform, and random sampling will make
the minority classes like bladder more scarce. Besides, the above-mentioned sampling
methods will not guarantee the extraction of surface points. So we used canny edge
detection to extract edges from all slices. After several trials, we choose 20 and 50 as
the lower threshold and upper threshold respectively based on the maximum number
of organ points that we can extract minimizing the number of background points.
After extracting the edges, the edge locations in the array are considered as point
coordinates(Figure 15). For every point in the point cloud, we also store the neighbor
intensity values using k×k×k grid centered around the point. We also transform the
points from voxel space to scanner space (In scanner space, the magnetic isocenter is
at the origin (0,0,0)). Let P ∈ N × R3 be the positions of the voxels in the original
image and R and T are the rotation and translation matrix. Let f be the mapping
between voxel space to point cloud coordinate space. f(P ) denotes the point in point
cloud space. Then

f(P ) = PR + T (9)

The kernel of the Feature Extractor in Figure 13 depends upon the number of intensity
points we extract. We tried hyperparameter tuning for k values and chose k = 7.
The number of points extracted from the volume data is approximately 2 × 105 ∼
3× 105. The distribution of classes in point cloud dataset is plotted in Figure 16. So
the point cloud dataset suffers from huge class imbalance as well as small training
examples. So we first focused on tackling class imbalance problem with RandLa-Net.
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Figure 15: Left: Visualization of one slice of a volumetric image from visceral. Mid-
dle: Edge Detection of that slice. Right: Point cloud extracted from the volume
image. The edges in the middle are considered as points representing the organ. For
the ease of visualization, background points are excluded from the point cloud.

6.3 Point Cloud Segmentation

6.3.1 Train

We choose five organs for our test - lungs, liver, bladder, left and right kidney (Figure
15) for multiclass segmentation and lungs and liver separately for binary segmentation
purpose. We used the PyTorch implementation of RandLa-Net3 and for KNN, we
used pynanoflann library4 which uses faster KD-Tree KNN implementation. For
GPU, we used Nvidia Quadro RTX 4000 8 GB and Nvidia Quadro RTX 8000 48 GB.
For images of dimension 128×128×, 8 GB GPU is sufficient but for 512×512×512, we
need 48 GB GPUs. The model takes approximately 30 hours to train. The intensity
values ranges from -1024 to 1024 and are clipped within the range [−250, 250] since
any values outside the range refer to noise. All the input features are normalized.
The parameters for training are below:

Training and Test Dataset 16 and 4 Optimizer Adam
Downsampling Rate(DR) 2 or 4 Learning Rate 10−4

Cross Validation 5 Fold KNN k Value 8
Epochs 300 epochs per fold Batch Size 1

Table 2: Parameters for training the RandLa-Net Model.

6.3.2 Results

1. Experiment on Loss Function

A. Multi-class Segmentation

We first started our experiments with multiclass segmentation with CE Loss. Input

3https://github.com/aRI0U/RandLA-Net-pytorch
4https://github.com/jlblancoc/nanoflann
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Figure 16: Class distribution of point cloud extracted from visceral dataset. The
background is the most dominating class, covering almost 87% of the points.

shape is (N, 3). Since we have a class imbalance problem, we first used CE loss
with frequency based weighting. But since the ratio of background is very high and
bladder is very low, the corresponding weights are 1.1 and 450 which underestimates
the importance of background points, so we have vast number of false positives (from
misclassified background points) for organs and also the model could not learn enough
distinctive features for differentiating organs(Table 7 Index 1), so recall gets lower also.
So we use ComboLoss which is a combination of different weights. The weights are
wr = 0.3 + 0.4

r+0.02
+ 0.3

r
. This gives better results (Table 7 Index 2) than frequency

based weighting. With IoULoss and DiceLoss seperately, the model performed very
poorly, so we added ComboLoss with IoULoss and DiceLoss (Table 7 Index 8,9 and
10). But using only CL loss was the best option among the three. But there was still
many false positives despite high recall.
The main reasons are the following. Considering the weight based confusion matrix
where weights for all the organs are W = {w1, w2, w3, w4, w5, w6} (organs in order
with the columns of Table 7), we can create a weight matrix(Figure 17)

MW =


w1 w1 w1 w1 w1 w1

w2 w2 w2 w2 w2 w2

w3 w3 w3 w3 w3 w3

w4 w4 w4 w4 w4 w4

w5 w5 w5 w5 w5 w5

w6 w6 w6 w6 w6 w6


For any background point, let the output score of the model be oi, so in cross entropy
loss, the loss for the point is −w1logoi. This is irrespective of the predicted class
for the point (if a background point is predicted correctly or incorrectly, then it is
given the same weight) and the weight for background is very low and this is the
main reasons for high recall for minority class and low IoU since the overwhelming
number of false positives (affected by high number of misclassified background points)
lower the IoU by dominating the denominator(FP >> TP + FN). So we used Cost
Matrix Cross Entropy (CMCE) for taking into account the large amount of misclas-
sified background points which affects heavily the false positives for minority class,
by giving them the same weights as the prediction class. We change the weights only
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Figure 17: Weights for every class in
CE without taking into account
prediction cost.

Figure 18: Weights for every class in
CE for taking into account predic-
tion cost.

for background class to analyse its effects (See Figure 18).
The confusion matrix in Figure 19 and Figure 20 are the results of a same model
before and after applying CMCE. There has been a large reduction in false negatives
for background points in the experiment after applying CMCE. It reduced almost
80% of the false negatives of background class predicted as bladder increasing the
IoU of bladder by 43% despite a reduction of recall by 50%.

Figure 19: Confusion Matrix before
applying CMCE.

Figure 20: Confusion Matrix after ap-
plying CMCE.

Figure 21: Confusion Matrix for multiclass segmentation. RandLa-Net with Feature
Extractor(7 × 7 × 7) has been used with CMCE Loss with downsampling factor 2.
We took the mean of the confusion matrix for all 20 images.

Using the same weights for background points misclassified as bladder points and
ground truth bladder points makes the model put more emphasis on backgrounds
misclassified as bladder points(due to its large quantity) which makes the recall of
bladder lower which is the case here. Reducing the weights of the first row (from
second column onwards) Figure 18 by 2,(i.e if a background is predicted as bladder,
its weight during loss is half of the weights for the bladder class instead of being same)
increases the recall of bladder by 57% but the IoU drops for the other class(Table 7
Index 12 and 13). So we conclude that using fixed weights will not be effective and
we need learning based dynamic weights.
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B. Binary Segmentation

We analysed the effect of weights on binary segmentation for liver and lungs with
RandLa-Net+Feature Extractor(7 × 7 × 7). Table 3 and 4 summarises the test re-
sults.

Experiment
Recall IoU

Background Liver Background Liver

RandLaNetFE + Cross En-
tropy (No Weights)

0.9960 ±
2× 10−6

0.6918 ±
5.65× 10−3

0.9878 ±
4.56× 10−6

0.5748 ±
1.7× 10−3

RandLaNetFE + Cross En-
tropy (Frequency Weights)

0.9706 ±
1.8× 10−5

0.9562 ±
3.1× 10−4

0.9692 ±
1.5× 10−5

0.4210 ±
1.8× 10−3

RandLaNetFE + Cross En-
tropy (CMCE)

0.9924 ±
3.84× 10−6

0.76±1.4×
10−3

0.9862 ±
4.56× 10−6

0.5652 ±
6.5× 1o−4

Table 3: Results of Liver Segmentation for different weights in Cross Entropy Loss.

Experiment
Recall IoU

Background Lungs Background Lungs

RandLaNetFE + Cross En-
tropy(No Weights)

0.9900 ±
6.6× 10−7

0.880 ±
1.1× 10−5

0.9776 ±
1.1× 10−6

0.806 ±
6.3× 10−5

RandLaNetFE + Cross En-
tropy(Frequency Weights)

0.9642 ±
1.1× 10−5

0.979 ±
1.9× 10−5

0.9620 ±
1× 10−5

0.7372 ±
8.5× 10−4

RandLaNetFE + Cross En-
tropy(CMCE)

0.9844 ±
6.64× 10−6

0.8872 ±
4.1× 10−4

0.9722 ±
9.36× 10−6

0.7766 ±
5.3× 10−4

Table 4: Results of Lungs Segmentation for different weights in Cross Entropy Loss.

When frequency-based weights are used, the model performs better on recall for Liver
and Lung but performs poorly on IoU since when we use frequency-based weights,
the lower weights in the case of the background class do not give more importance to
the false negatives of the background points than the true positives. Using CMCE(i.e
for false negative cases of background, we use the weight of the organ) improves the
IoU a bit but recall of the organ drops. When we use the same weights as the organ
for misclassified background points, initially during training overwhelming number of
misclassified background points dominate the loss and organ points get less impor-
tance in the loss, so we get a lot of misclassified organ points i.e recall gets lower.

2. Experiments on Feature Learning
Table 7 Index 2,3,4,5 show that using additional point features can definitely improve
the IoU results. So we created a feature extractor which will automatically learn
features from neighboring intensity points. These features will then be aggregated
with attention module in RandLa-Net to learn distinctive features for points.
For the multi-class segmentation task, Table 7 Index 5,6,7 and 8 show the results of
using feature extractors over manually creating features. This depends also on the
receptive field (neighbour intensity dimension k × k × k) for the feature extractor.
3× 3× 3 performs very poor compared to intensity and gradient features. We choose
k = 7 for optimal performance in terms of computation and efficiency. Table 5 and 6
show the effect of Feature Extractor on Recall and IoU on binary segmentation task
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Experiment
Recall IoU

Background Liver Background Liver

RandLaNet 0.9830 ±
2.68× 10−5

0.6008 ±
4.68× 10−3

0.9730 ±
7.2× 10−06

0.3426 ±
1.85× 10−4

RandLaNet + FE 0.9924 ±
3.84× 10−6

0.76 ±
1.4× 10−3

0.9862 ±
4.56× 10−6

0.5652 ±
6.5× 1o−4

Table 5: Results of Liver Segmentation with and without Feature Extractor.

Experiment
Recall IoU

Background Lungs Background Lungs

RandLaNet 0.9568 ±
5.9× 10−5

0.7936 ±
9.95× 10−4

0.9348 ±
4.14× 10−5

0.5702 ±
1.4× 10−4

RandLaNet + FE 0.9844 ±
6.64× 10−6

0.8872 ±
4.1× 10−4

0.9722 ±
9.36× 10−6

0.7766 ±
5.3× 10−4

Table 6: Results of Lungs Segmentation with and without Feature Extractor.

for liver and lungs.

3. Experiments on Downsampling Rate:
In every encoder block, RandLa-Net randomly removes some points which makes the
learning faster but reduces receptive field and poorer feature quality in the latent
vector. The original paper has downsampling rate 4. Let N = {n1, n2, n3, n4, n5, n6}
be the number of organ points for background, liver, lungs, bladder, left and right
kidney. After four encoder steps every organs have almost ni/d

4 where d is the down-
sampling factor. Since n4 for bladder is very low, in the latent vector space only a
small fraction of bladder points (typically number of bladder points 300 − 500 for
200000 points in point cloud) are present. So we decreased the rate d to 2 and found
significant improvements in IoU with almost 100% increase in bladder IoU, 7.6% for
liver, 2.6% for lungs, 44% for right kidney and 22% for left kidney. (Table 7 Index
11,12,13)

4. Experiments on Latent Vector:
Since all the weighting based CE methods were ineffective to improve the segmenta-
tion and solve the class imbalance problem, we wanted to verify if the latent feature
vectors in the network are as discriminative as they should be for points belonging
to different classes. Since the downsampling steps reduce the number of points for
minority class, the global features for organs are influenced only by a small number
of points having higher embedding size but lower receptive fields to learn local spa-
tial features. For effective segmentation, points belonging to the same class should
have similar latent vector and points belonging to different class should have different
latent vectors (i.e distance between latent vectors must be higher). We infer from
Table 7, that the model is not learning enough distinctive features for every organs
and this is the reason false negatives are more prevalent for cases with dominating
classes like background and lungs.
So we used the embedding from Figure 12 with shape (N

16
, 512) after applying MLP.
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Figure 22: L2 Distance of latent vectors from mean lungs latent vector.

Figure 23: Cosine similarity of latent vectors from mean lungs latent vector.

Let Lc = {lci}N
c

i=1 be the set of latent vectors for every class c, N c is the number of

points of class c. For c=lungs, we calculate the mean latent vector, Mc =
Nc∑
i=1

lci

and then we calculate the l2 distance {||Mc − lc̃i ||2}i=N c̃

i=1 ,∀c̃ and cosine similarity

{ Mc·lc̃i
||Mc||·||lc̃i ||

}i=N c̃

i=1 , ∀c̃. We plot the l2 distance in Figure 22 and cosine similarity in

Figure 23. Some of the points in the liver have similar latent vectors as lungs as can
be seen in the two figures, this is one of the reasons for liver points being misclassified
as lungs in Figure 20. The similarity distribution for lungs has higher variance due
to the difference in features in left and right lung which has been merged in our task.
So for future tasks, we will add measure to make the latent vector for same organs
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are similar and for different organs apart from each other.
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1 CE (w= 1
r
)+DR(4) (N, 3) Recall 0.486 0.803 0.832 0.235 0.973 0.654 0.523

IoU 0.482 0.12 0.271 0.024 0.035 0.104 0.173

2 ComboLoss(CL)+DR(4) (N, 3) Recall 0.6274 0.828 0.8378 0.9336 0.978 0.9602 0.86

IoU 0.6244 0.142 0.353 0.0398 0.124 0.1166 0.233

3 Intensity+CL+DR(4) (N, 4) Recall 0.688 0.8219 0.875 0.968 0.968 0.951 0.878

IoU 0.6846 0.146 0.4508 0.0492 0.1416 0.1052 0.263

4 Gradient+CL+DR(4) (N, 4) Recall 0.63 0.835 0.8516 0.951 0.95 0.93 0.86

IoU 0.627 0.16 0.38 0.032 0.107 0.1192 0.237

5 Gradient+Intensity+
CL+DR(4)

(N, 5) Recall 0.8366 0.7960 0.8300 0.9100 0.9300 0.8900 0.865

IoU 0.8238 0.2954 0.5158 0.1350 0.2110 0.1916 0.362

6 FE(3)+CL+DR(4) (N, 3),(N, 3, 3, 3) Recall 0.8134 0.9210 0.7982 0.9570 0.9730 0.9334 0.899

IoU 0.8020 0.2628 0.6816 0.1092 0.1450 0.1166 0.3529

7 FE(9)+CL+DR(4) (N, 3),(N, 9, 9, 9) Recall 0.823 0.9070 0.8206 0.9628 0.9706 0.9416 0.9043

IoU 0.8114 0.2770 0.6946 0.1060 0.1440 0.1280 0.36

8 FE(7)+CL+DR(4) (N, 3),(N, 7, 7, 7) Recall 0.826 0.8985 0.9295 0.9365 0.9485 0.882 0.903

IoU 0.8205 0.336 0.624 0.1435 0.215 0.2015 0.39

9 FE(7)+IoULoss+
CL+DR(4)

(N, 3),(N, 7, 7, 7) Recall 0.646 0.9185 0.9375 0.946 0.9905 0.919 0.893

IoU 0.6425 0.27 0.49 0.0875 0.1115 0.1105 0.285

10 FE(7)+Dice+ CL+DR(4) (N, 3),(N, 7, 7, 7) Recall 0.9566 0.7324 0.7904 0.2064 0.6248 0.5018 0.6354

IoU 0.9222 0.4912 0.6734 0.1246 0.2782 0.3258 0.4692

11 FE(7)+DR(4)+CMCE+
Comb-Weight

(N, 3),(N, 7, 7, 7) Recall 0.9616 0.676 0.8282 0.178 0.5636 0.589 0.633

IoU 0.9294 0.4584 0.7296 0.1084 0.2738 0.328 0.471

12 FE(7)+DR(2)+CMCE+
Comb-Weight/2

(N, 3),(N, 7, 7, 7) Recall 0.9258 0.9290 0.7870 0.7164 0.9042 0.8654 0.8546

IoU 0.9020 0.3522 0.7488 0.2490 0.3156 0.3446 0.4854

13 FE(7)+DR(2)+CMCE+
Comb-Weight

(N, 3),(N, 7, 7, 7) Recall 0.9446 0.8112 0.9118 0.4564 0.7924 0.852 0.795

IoU 0.9282 0.4964 0.7488 0.2266 0.4006 0.3978 0.533

Table 7: Experiment Results for multi-class segmentation. CL is the Cross Entropy Loss with combination weights
(wr = 0.3 + 0.4

r+0.02
+ 0.3

r
). FE(n) is RandLa-Net with Feature Extractor with n× n× n intensity shape as explained

Section 5.1. DR(n) is the random downsampling rate (In every encoder block 1
n
% points are randomly removed).

Comb weight is the weight for CL. CMCE is the cost matrix cross entropy as explained in Section 4.3.A. The best
results are in red.

6.4 Voxel Segmentation

Our final goal is to segment all the voxels in the original 3D image in the Visceral
dataset. Since every voxel has a bijection mapping from voxel space to point cloud
space (i.e every voxel can be mapped to a point in the point cloud using Equation
9), we can map a query voxel in the point cloud space and segment it using trained
model. The shape of the organ will then be the decision boundary of the model. For
faster approximation of the decision surface we have used the following steps. Let
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Figure 24: Illustration of voxel segmentation. 3D bounding box is formed using the
min and max coordinate from the predicted label. These points are mapped to voxel
space and all the voxels in between the bounding box are selected. These new query
voxels are mapped to point cloud space and added to the input point cloud and passed
to the trained model for predicting segmentation label.

P be the input point cloud, M be the trained RandLa-Net with Feature Extraction
Layer and L = M(P ) be the predicted label of the input point cloud.

Figure 25: Voxel Segmentation of Lungs after mapping the voxels in the point cloud
space and adding it to the input point cloud. RandLa-Net has been used for training
the binary lungs segmentation task with CMCE Loss. FE is the Feature Extraction
Layer.

1. We find the 3D bounding box for every organ using the min pmin and max pmax

coordinates of the predicted segmentation label.

2. Once we find min and max coordinates, we map those two points using f−1(x) =
R−1(x − T ) where R and T are the rotation and translation matrix for trans-
formation from voxel space to scanner space(or in our case point cloud space).
Let vmin = f−1(pmin), vmax = f−1(pmax).
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Figure 26: Voxel Segmentation of Liver after mapping the voxels in the point cloud
space and adding it to the input point cloud. RandLa-Net has been used for training
the binary liver segmentation task with CMCE Loss. FE is the Feature Extraction
Layer.

3. Then we store all the voxels(D) in the 3d grid spanning from vmin to vmax .

4. We project all the voxels to point cloud space using f(x) = Rx + T and add
it to the input point cloud (i.e the extracted point cloud using edge detection),
N → N +D.

5. Finally we segment the new point cloud using the trained model. We pass the
new point cloud as the input to the trained model to segment the labels for the
new points.

The above steps are followed to approximate the decision boundary faster. We can
segment all the 128 × 128 × 112 voxels (Original Visceral image dimension is 512 ×
512×450, we downsized the image to 128×128×112). This method of segmentation
is model-independent, so any model can be used to segment the voxel by mapping
them to the point cloud space. Although models having downsampling methods in
intermediate feature learning layers can perform faster segmentation.

The extracted input point cloud (using Canny Edge Detection) contains point
with high gradients and they are mostly surface points and the newly added query
points are of low gradients and are mostly inside points of the organs. Our modified
RandLa-Net with Feature Extraction performs better on the new query points than
the original RandLa-Net. Figure 25 and 26 shows the voxel segmentation for lungs and
liver respectively. The Feature Extraction layer learns the local spatial information
using the neighbourhood intensity values to incorporate local features with the point
features. This is why points outside the lungs in Figure 25 are less misclassified
compared to the prediction of model without FE. But points in the body envelope in
Figure 25 contain similar geometrical properties as points inside the lungs, which is
why we see a lot of false positives on the body envelope which is absent in the case of
model without feature extraction. We infer that using SDF learning, the model can
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learn different features for points in the body envelope and inside the lungs points for
effective segmentation.

7 Conclusions

In this report, we analysed a novel approach to segment 3d volumetric medical im-
ages using point cloud segmentation. We extracted surface points of the organs us-
ing canny edge detection and applied modified RandLa-Net with Feature Extraction
Layer which performs significantly better than the original RandLa-Net[29]. We ex-
tracted the decision boundary of our trained model to accomplish the final task which
is segmenting the voxels in the original volume image. Because of one-to-one mapping
between voxel space and point cloud space on which the model is trained, we can map
the voxel position to point cloud space and predict its label. Thus after training the
model on high gradient points, we can query the label of any voxel after mapping
to it the point cloud space and adding it to the original input point cloud. We also
performed numerous experiments on the internal architectural problems related to
RandLa-Net for its incapability to have good performance on minority classes. We
conclude that it has been caused by not learning rich and distinctive features in the
latent vector space for each class and the downsampling factor which decreases the
receptive field causing loss of important features. Also we need to provide the suitable
cost value in CMCE loss to solve the effect of class imbalance. Since our segmenta-
tion output in the final task contains many extraneous regions in Figure 25 and the
decision boundaries are not smooth, the present model may not have preserved the
anatomical structure of the organs. In our future work, we will use signed distance
function to learn the decision boundary which separates the outside and the inside
points of the organs depending on whether the SDF is positive or negative. For binary
organ segmentation task, we can predict SDF only and the decision boundary will be
the points whose predicted SDF value is zero. But for multi-organ segmentation, we
will perform multi-label classification with two heads in the last layer of RandLa-Net
with FE (Figure 12) to predict segmentation label as well as SDF value. We can ex-
tract the ground truth SDF value using the segmentation mask and use l2 as distance
metric. l1 loss can be used as well as product loss[36] to penalize the wrong sign in
predicted SDF value.

To counter the effect of class imbalance, we will learn the weights [32] by adding
another layer in the model after output layer. These weights will be used to calculate
the final softmax output. For example if an output score is {o1, o2, · · · , oc} and the
weight scores are {ξ1, ξ2, · · · , ξc}, where c is the number of classes, then the softmax
output of ith term is,

ŷi =
ξioi

N∑
j=1

ξjoj

After this, we can use CE Loss without any weights.
Also, random sampling can be changed to learning-based sampling[28] for remov-

ing more irrelavant background points rather than random points in the organs. One
other challenge is to learn distinctive features in latent space for learning shapes of
different organs. In order to achieve that the embeddings of same organs should be of
similar nature and different organs should have very dissimilar embeddings. So we will
use a loss function[33] to minimize the variance of embeddings between same organ
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points and increase the distance between different organ points. This will generate
discriminative embeddings for points belonging to different organs.
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